The Power of Algorithms
(solving scalability of video streaming)

Mikkel Thorup

Center for Basic Algorithms Research Copenhagen

Algorithms to handle BIG data

The amount of data grows much faster than computer
speeds, so need for efficient algorithms to process data
becomes more and more urgent.

Randomized Algorithms

| am particularly fascinated by the use
of randomness in computation.

Almost everything is simpler and faster with
randomized algorithms. Big Data cannot be
handled without randomness.

Distribute objects
in storage boxes.

ik

What happens on a farm?

1 Animals 5 9
&
P’ (wi'
€8S Qd
2 Office 6 10
3 7 11
4 8 12

Distribute objects
in storage boxes.

o4

Whid:‘ It ‘i ?

ST Wﬂh =
?m’ﬂ. WArm

Fully-Random Hash Functions

What we want is a re-computable fully-random
hash function h assighing independent random
box number 1,...,12 to every possible object:

h?‘) = h i) with probability 1/12.

With 18 other objects, on average i expected
to share box with 18/12=1.5 objects.”

Fully-Random Hash Functions

What we wantls a re-computable fully-random

hash tﬁj@ ndom

boxn

h?‘) = h i) with probability 1/12.

With 18 other objects, on average i expected
to share box with 18/12=1.5 objects."

Random Hash Functions

Re-computable random hash function h
assigningrandom box 1,...,12 to every object.

.x-,ﬁ|

-4
')

h(‘) - ((([548] } .o
: mod 1009) mod 12)+ 152

(586) - ([B] 749]) |7 Prob < /12
- mod 1009 od 12)+1 =5

Distribute objects
in storage boxes.

mod 1009) mod 12) +1

=1
Used to store and find things

In computers since 1956.

10

11

12

Example using my own research
Company Vimeo

Main competitor of YouTube — 170 million users/month.
Serves about 1 billion requests for video clips per day.

o
vmo Login Hostvideosv Watchv OnDemand v S videos, people, and more Q

The Fourth Industrial Revolution Zeach results for“algorithms™

from Marta Chierego 4 mor m

@ <+ Follow

5 The Fourth Industrial
TN FOURTH IOUSTRIAL BEYOLETION Revolution

4 Share

Key technology: Consistent hashing

Chord: A Scalable Peer-to-peer Lookup Service for Internet

Applications

lon Stoica; Robert Morris, David Karger, M. Frans Kaashoek, Hari Balakrishnant
MIT Laboratory for Computer Science
chord@Ics.mit.edu
http://pdos.Ics.mit.edu/chord/

Abstract and involves relatively little movement of keys when nodes join

A fundamental problem that confronts peer-to-peer applications is

and leave the system.

10 ¢
Paf
this
ak
imyj
iter
key|
SyS§
chg

Title 1-20 Cited by Year

Chord: A scalable peer-to-peer lookup service for internet

applications 12552 2001
| Stoica, R Morris, D Karger, MF Kaashoek, H Balakrishnan

ACM SIGCOMM Computer Communication Review 31 (4), 149-160

per

and the state maintained by each node scaling logarithmically with
the number of Chord nodes.

Y

event results in no more than O(log” N) messages.
Three features that distinguish Chord from many other peer-to-
peer lookup protocols are its simplicity, provable correctness, and

Vimeo’s bandwidth bottleneck

Issue: High

bandwidth

requirement...

From algorithm theory to industrial reality

Vimeo Engineering Blog vy 0

Improving load balancing with a new
consistent-hashing algorithm

| We run Vimeo’s dynamic video packager, Skyfire, in the cloud, serving
§ Elﬂ% @O S IRBY)0 o billion DASH and HLS requests per day. That’s a lot! We're very

%%S?j leI'EllY happy with the way that it performs, but scaling it up to today’s traffic and

beyond has been an interesting challenge. Today I'd like to talk about a new
T OV I 19 4 algorithmic development, bounded-load consistent hashing, and how it

eliminates a bottleneck in our video delivery.

Computer Science > Data Structures and Algorithms

Consistent Hashing with Bounded Loads

Vahab Mirrokni, Mikkel Thorup, Morteza Zadimoghaddam
(Submitted on 3 Aug 2016)

Eliminating the bandwidth bottleneck

Read bandwidth by server

10/14 1010 1018 10/20 1022 1024 10728 10728 10730

Old algorithm New algorithm

switch

Classic Consistent Hashing (unbounded loads)

* Problem:

— Assign clients to servers so server of client easy to
find.

— Dynamic system where both clients and servers
can join and leave.

— Reassign as few clients as possible.

e Algorithmic Solution:

— Map clients and servers to cycle using random
hash function.

— Client goes clockwise to first server.

Consistent hashing (unbounded loads)

Clients 1,2,3,4,5,6,7,8

Servers A,B,C,D

Map to cycle with

hash function.

Client clock-wiseto 2
first server.

Consistent hashing (unbounded loads)

Clients 1,2,3,4,5,6,7,8

Servers A,B,C,D

Map to cycle with

hash function.

Client clock-wiseto 2
first server.

Consistent hashing (unbounded loads)

Who serves client x? y?

Clients 1,2,3,4,5,6,7,8 Bl2| 4

Servers A,B,C,D

y

Map to cycle with D

hash function.

Client clock-wise to
first server.

Consistent hashing (unbounded loads)
If server Begrmévd3 |@aweato the opposite

Clients 1,2,3,4,5,6,7,8 > Bl2]a]s
Servers A,B,C,D

4
Map to cycle with D

hash function.

[WEN

Client clock-wiseto 2
first server.

Consistent hashing (unbounded loads)

Clients 1,2,3,4,5,6,7,8 B|2]|4

Servers A,B,C,D

Map to cycle with D

hash function.

Client clock-wise to
first server.

Consistent hashing (unbounded loads)

NS Twice average load
Clients 1,2,3,4,5,6,7,8 sf 2|4(5|7

Servers A,B,C,D

Aver. load 8/4= 2

Map to cycle with

hash function.

Client clock-wise to
first server.

Consisten Hashing (Unbounded Loads)

If we randomly place n servers on cycle, and
each covers segment from preceeding server,
then expect some server to cover fraction

(Inn)/n

Such server expected to get (In n) times the |
average load. i

In 1000 =7, In 1000000 = 14. |

Consistent hashing with bounded loads

* Problem:
— Assign clients to servers: server of client easy to find.

— Dynamic system where both clients and servers can
join and leave. Reassign as few clients as possible.

— No server has more than 1.5 x average number of
clients (the load bound).

e Our Algorithmic Solution:

— Map clients and servers to cycle using random hash
function.

— Client goes clockwise to first non-full server.

Consistent hashing with bounded loads

Clients 1,2,3,4,5,6,7,8 B

Servers A,B,C,D

Aver. load 8/4=2
Max load 1.5x2=3

Map to cycle with

hash function.

Client clock-wiseto 2
first non-full server.

A

Consistent hashing with bounded loads

Clients 1,2,3,4,5,6,7,8 B

Servers A,B,C,D

Aver. load 8/4=2
Max load 1.5x2=3

Map to cycle with

hash function.

Client clock-wiseto 2
first non-full server.

A

Consistent hashing with bounded loads

Who serves client x? y?

Clients 1,2,3,4,5,6,7,8 B|2|4]|5

Servers A,B,C,D

Aver. load 8/4=2
Max load 1.5x2=3

Map to cycle with y D

hash function.

Client clock-wise to
first non-full server.

A

Consistent hashing with bounded loads

Server D leaves - more complicated..

Clients 1,2,3,4,5,6,7,8 > Bl2]4a]s
Servers A,B,C,D
4
Aver. load 8/3= 2
Max load 1.5x8£3=4
Map to cycle with D

hash function.

[WEN
N

Client clock-wiseto 2
first non-full server.

Cost of Consistent hashing with bounded loads
How many full passed on way to non-full ? 1

Clients 1,2,3,4,5,6,7,8 f "B
Servers A,B,C,D

Aver. load 8/4=2
Max load 1.5x2=3

Map to cycle with
hash function.

Client clock-wiseto 2
first non-full server.

A

Consistent hashing with bounded loads

Theorem With load-bound = (1 + €) X aver-load, the

expected number of full servers passed to non-full is
proportional to 1/&2.

For example, with e = 0.1 = 10%, 1/£%=100

The bound holds no matter the number of clients and
servers which for Vimeo approaches billions.

Basic algorithmic research with many applications

Our algorithm has no details
specific to video streaming.
Works for any dynamic
allocation system in the world —
now used also in Google’s cloud
and other companies.

Mathematical analysis based on
properties of degree-4
polynomials with random
coefficients — the theory of
which was originally developed
with other applications in mind.

Lemma 10. The expected number of balls hashing directly to any
expected number of balls forwarded into q from its predecessor ¢~ is
not active, and its active successor q is given an extra capacity of ot
bins starting from q¢* is O((log c)/c?).

Proof. For the first statement, we note that the expected number of bal
n/r forany 0 < ¢ < r. These are not added to ¢ if some bin hash to [h|
event because balls and bins hash independently. The expected numt
isuy=1i(n—1)/r. Fori > r/(n — 1), we have u > 1, and then, by
in [h(g) — 3, h(q)) is O((p + p*)/(n — 0)*) = O(1/u?) = O((r/(1
hashing directly to g is thus bounded by

n/r- (LT/(R—l)J + D (r/(n)?

i=|r/(n—1)|+1

We also have to consider the probability that the preceding bin ¢~ for
we would need ¢~ to be filled even if we increased its capacity by 1
least 2. This is bounded by the probability of having an interval I >
bins including one with capacity at least 2. This is what we analyze«
Pr[d > 1] < E[d] = O((logc/c?). By the capacity constraint, the
forwarded to and end in g is 2em /n, so the expected number is

O((log ¢/c*)2¢m/n = O((m/n)(log

Next we ask for the expected number d of full bins starting from the :
bin ¢, when ¢ is given an extra capacity of one. Again this implies tt
the analysis from the proof of Lemma@implies that E[d] = O((log ¢

Consistent hashing with bounded loads

Theorem With load-bound = (1 + &) X aver-load, the expected
number of full servers passed to non-full is proportlonal to1/e”.

Recent improvement with new algorithm to:

Theorem With load-bound = (1 + €) X aver-load, the expected
number of full servers passed to non-full is proportional to 1 /¢

For example, with e = 0.01 = 1%,
1/£% =10000 improved to 1/ = 100

The new bound is the best possible. Nothing better can ever be done.

Energy saving in servers

List Cache Hit %

10/13 10/16 10/19 10/22 10/25 10/28 10/31 11/3

== | ocal == Remote == Overall

* Green line is when clients served locally. Yellow is remote.
* Server farms emit more CO, than all air traffic.

